ENERGIA ### **GENERATOR SET DATA SHEET** Spec sheet: SS12-CPGK Noise data sheet (Open/enclosed): ND50-OS550 / ND50-CS550 Airflow data sheet: AF50-HHP Derate data sheet DD50-OSHHP/DD50-CSHHP Transient data sheet: TD50-HHP | Fuel Consumption | Standby
KW (kV) | | | | Prime
KW (k' | VA) | | | |------------------|--------------------|------|-------|------|-----------------|------|------|------| | Ratings | 200 (25 | 0) | | | 180 (2 | 25) | | | | Load | 1/4 | 1/2 | 3/4 | Full | 1/4 | 1/2 | 3/4 | Full | | US gph | 12 | 20 | 28.5 | 38 | 11 | 18.5 | 25.9 | 33.8 | | L/hr | 54.5 | 90.8 | 129.8 | 173 | 50 | 84 | 118 | 154 | **Engine** Standby Rating **Prime Rating** | Engine model Configuration Aspiration Gross engine power output, kWm BMEP at set rated load, kPa Bore, mm Stroke, mm Rated speed, rpm Piston speed, m/s Compression ratio Lube oil capacity, L Overspeed limit, rpm Regenerative power, KW Governor type Starting voltage | VTA28-G5 Cast Iron, 40° V12 Cylinder Turbo Charged and After-Cooled 971 1599 140 152 1800 9.1 13.1:1 83 2100 ±50 75 Electronic 24 Volts DC | 608
1448 | |---|--|-------------| | Fuel Flow Maximum fuel flow, L/hr Maximum fuel inlet restriction, mm Hg | 337
203 | | | Maximum fuel inlet temperature (°C) | 70 | | | Maximum fuel flow, L/hr | 337 | |---------------------------------------|-----| | Maximum fuel inlet restriction, mm Hg | 203 | | Maximum fuel inlet temperature (°C) | 70 | #### Air | Combustion air, m³/min | 64.6 | 58.50 | |--------------------------------------|------|-------| | Maximum air cleaner restriction, kPa | 6.2 | | ## **ENERGIA** #### **Exhaust** | Exhaust gas flow at set rated load, m³/min
Exhaust gas temperature, °C
Maximum exhaust back pressure, kPa | 142.8
502
10.2 | 131.5
474 | |---|----------------------|--------------| | Standard Set-Mounted Radiator | | | #### tandard Set-Mounted Radiator | Ambient design, °C | 50 | | |---|-------|-------| | Fan load, KWm | 19.5 | | | Coolant capacity (with radiator), L | 125 | | | Cooling system air flow, m3/min @ 12.7mmH2O | 17.8 | | | Total heat rejection, BTU/min | 26065 | 15130 | | Maximum cooling air flow static restriction | 25.4 | | ### Open Set Derating Factors kVA (KW) Note: Standard open genset options running at 400V, 150m above sea level. For enclosed product derates, please refer to datasheet - DD50- CS550. | Standby
Prime | 27°C
706.3(565)
640 (512) | 40°C
706.3(565)
640(512) | 45°C
688.8(551)
626.3(501) | 50°C
667.5(534)
606.3 (485) | 55°C
RTF
RTF | |--|---------------------------------|--------------------------------|----------------------------------|-----------------------------------|--------------------| | Weights* Unit dry weight kgs Unit wet weight kgs | | Open
5491
5760 | Enclosed
RTF
RTF | | | Weights represent a set with standard features. See outline drawing for weights of other configurations. | Dimensions | Length(A) | Width(B) | Height(C) | |----------------------------------|-----------|----------|-----------| | Standard open set dimensions | 4047 | 1608 | 1942 | | Enclosed set standard dimensions | RTF | RTF | RTF | #### **Genset Outline** #### Open set #### **Enclosed set** Outlines are for illustrative purposes only. Please refer to the genset outline drawing for an exact representation of this model. # **ENERGIA** #### **Alternator Data** | Feature code | Connection1 | Temp rise
degrees C | Duty2 | Alternator | Voltage | |--------------|--------------|------------------------|-------|------------|----------| | B769 | Wye, 3 Phase | 125/150C | S/P | HCBG | 380-480V | | B682 | Wye, 3 Phase | 150/125C | S/P | HC5F | 416-480V | ### **Ratings Definitions** | Ratings Definitions | | | | |--|--|---|---| | Emergency Standby
Power (ESP) | Limited-Time running
Power | Prime Power (PRP): | Base Load (Continuous)
Power | | Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514. | Applicable for supplying power to a constant electrical load for limited hours. Limited Time Running Power (LTP) is in accordance with ISO 8528. | Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514. | Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN 6271 and BS 5514. | ### Formulas For Calculating Full Load Currents: | Three phase output | Single phase output | |----------------------|---------------------------------| | kW x 1000 | kW x Single Phase Factor x 1000 | | Voltage x 1.73 x 0.8 | Voltage |